Deploying a SQL Data Warehouse over a Data Lake—often referred to as a "Lakehouse" architecture—combines the scalability and flexibility of a Data Lake with the structured querying power of a Data Warehouse. Here's a comprehensive deployment plan ......
π§ Phase 1: Strategy & Architecture Design
πΉ Define Objectives
Enable structured analytics over semi-structured/unstructured data
Support BI tools (e.g., Power BI, Tableau) via SQL endpoints
Ensure scalability, cost-efficiency, and governance
πΉ Choose Technology Stack
Layer | Azure Option | AWS Option |
---|---|---|
Data Lake | Azure Data Lake Storage Gen2 | Amazon S3 |
SQL Warehouse | Azure Synapse Analytics / Fabric | Amazon Redshift Spectrum |
Metadata Catalog | Azure Purview | AWS Glue Data Catalog |
Orchestration | Azure Data Factory | AWS Step Functions / Glue ETL |
CI/CD | Azure DevOps / GitHub Actions | AWS CodePipeline / GitHub |
π️ Phase 2: Data Lake Foundation
πΉ Provision Storage
Create hierarchical namespace-enabled containers
Define folder structure:
/raw/
,/curated/
,/sandbox/
πΉ Ingest Raw Data
Use ADF pipelines or Glue jobs to ingest from sources (RDBMS, APIs, logs)
Apply schema-on-read using Parquet/Delta formats
πΉ Implement Governance
Tag datasets with business metadata
Register assets in Purview or Glue Catalog
π§± Phase 3: SQL Warehouse Layer
πΉ Create External Tables
Use
CREATE EXTERNAL TABLE
to define schema over Data Lake filesPartition by date or business keys for performance
πΉ Optimize Performance
Use columnar formats (Parquet, Delta)
Enable caching or materialized views for frequent queries
Implement statistics and auto-refresh policies
πΉ Enable BI Connectivity
Expose SQL endpoints
Configure ODBC/JDBC for Power BI/Tableau
π Phase 4: CI/CD & Automation
πΉ Infrastructure as Code
Use ARM templates or Terraform for Synapse/Redshift setup
Script Data Lake provisioning and access policies
πΉ Pipeline Automation
Build ADF pipelines with parameterized datasets
Use Git integration for version control
Deploy via DevOps YAML or PowerShell scripts
πΉ Monitoring & Alerts
Integrate with Azure Monitor or CloudWatch
Set up alerts for pipeline failures, query latency, and storage thresholds
π Phase 5: Security & Compliance
πΉ Access Control
Use RBAC and ACLs for Data Lake
Implement row-level and column-level security in SQL layer
πΉ Data Protection
Encrypt data at rest and in transit
Mask sensitive fields using dynamic data masking
πΉ Audit & Compliance
Enable logging for query access and data modifications
Integrate with compliance tools (e.g., Microsoft Defender, AWS Macie)
π Phase 6: Validation & Rollout
πΉ Test Scenarios
Validate SQL queries across raw and curated zones
Perform load testing and concurrency checks
πΉ Stakeholder Training
Provide SQL access guides
Conduct workshops for analysts and data scientists
πΉ Rollout Strategy
Start with a pilot domain (e.g., Sales or Finance)
Gradually onboard other domains
Here's a clean, professional deployment diagram and CI/CD template tailored for deploying a SQL Data Warehouse over a Data Lake in Azure. You can adapt this for AWS or hybrid environments as needed.
π§ Architecture Diagram: SQL Data Warehouse over Data Lake (Azure)
+----------------------------+ +----------------------------+
| Source Systems | | External Data Sources |
| (ERP, CRM, APIs, Files) | | (Web, FTP, SaaS, IoT) |
+------------+--------------+ +------------+---------------+
| |
v v
+----------------------------+ +----------------------------+
| Azure Data Factory (ADF) |<----->| CI/CD Pipeline (DevOps) |
| - Ingest & Transform | | - YAML / ARM / PowerShell|
+------------+--------------+ +----------------------------+
|
v
+----------------------------+
| Azure Data Lake Storage |
| - Raw Zone (/raw/) |
| - Curated Zone (/curated/) |
| - Sandbox Zone (/sandbox/) |
+------------+--------------+
|
v
+----------------------------+
| Azure Synapse / Fabric |
| - External Tables (SQL) |
| - Views / Materialized |
| - SQL Endpoints for BI |
+------------+--------------+
|
v
+----------------------------+
| BI Tools / Consumers |
| - Power BI, Tableau |
| - Analysts, Data Scientists|
+----------------------------+
⚙️ CI/CD Template: Azure DevOps YAML (ADF + Synapse)
trigger:
branches:
include:
- main
variables:
environment: 'dev'
resourceGroup: 'rg-data-lakehouse'
location: 'westeurope'
stages:
- stage: DeployADF
jobs:
- job: DeployADF
steps:
- task: AzureResourceManagerTemplateDeployment@3
inputs:
deploymentScope: 'Resource Group'
azureResourceManagerConnection: 'AzureServiceConnection'
subscriptionId: '$(subscriptionId)'
action: 'Create Or Update Resource Group'
resourceGroupName: '$(resourceGroup)'
location: '$(location)'
templateLocation: 'Linked artifact'
csmFile: 'arm/adf-template.json'
overrideParameters: '-factoryName $(adfName)'
- stage: DeploySynapse
jobs:
- job: DeploySQL
steps:
- task: SqlAzureDacpacDeployment@1
inputs:
azureSubscription: 'AzureServiceConnection'
ServerName: '$(synapseServer)'
DatabaseName: '$(synapseDB)'
SqlUsername: '$(sqlUser)'
SqlPassword: '$(sqlPassword)'
DacpacFile: 'sql/synapse.dacpac'
A version for AWS (Redshift Spectrum + S3 + Glue) or a hybrid setup is below....
π Hybrid Lakehouse Architecture: Azure + AWS
π§± Core Components
Layer | Azure Stack | AWS Stack |
---|---|---|
Data Lake | Azure Data Lake Storage Gen2 | Amazon S3 |
SQL Warehouse | Azure Synapse / Fabric | Amazon Redshift Spectrum |
Metadata Catalog | Azure Purview | AWS Glue Data Catalog |
ETL/Orchestration | Azure Data Factory | AWS Glue / Step Functions / Airflow |
CI/CD | Azure DevOps / GitHub Actions | AWS CodePipeline / GitHub |
BI Tools | Power BI, Tableau | QuickSight, Tableau |
π§ Deployment Plan
πΉ Phase 1: Foundation Setup
Provision S3 buckets and ADLS Gen2 containers with matching folder structures (
/raw/
,/curated/
,/sandbox/
)Set up cross-cloud identity federation (e.g., Azure AD ↔ IAM roles)
πΉ Phase 2: Data Ingestion
Use ADF and Glue to ingest data from sources into respective lakes
Apply schema-on-read using Parquet or Delta formats
πΉ Phase 3: SQL Layer Integration
Create external tables in Synapse and Redshift Spectrum pointing to lake zones
Use shared metadata via Purview ↔ Glue integration (manual or via APIs)
πΉ Phase 4: CI/CD Automation
Use Terraform or Pulumi for cross-cloud provisioning
Automate pipeline deployment via Azure DevOps and AWS CodePipeline
Store SQL scripts and ETL logic in GitHub with environment branching
πΉ Phase 5: BI & Consumption
Expose SQL endpoints from both Synapse and Redshift
Use semantic layers (e.g., AtScale) for unified business logic
Connect Power BI, Tableau, or QuickSight to both endpoints
πΉ Phase 6: Governance & Security
Apply RBAC and IAM policies across clouds
Encrypt data at rest and in transit
Enable audit logging and data classification
πΊ️ Architecture Diagram (Hybrid)
+----------------------------+ +----------------------------+
| Source Systems | | External Data Sources |
| (ERP, CRM, APIs, Files) | | (Web, SaaS, IoT, FTP) |
+------------+--------------+ +------------+---------------+
| |
v v
+----------------------------+ +----------------------------+
| Azure Data Factory (ADF) | | AWS Glue / Airflow |
| - Ingest & Transform | | - ETL & Cataloging |
+------------+--------------+ +------------+---------------+
| |
v v
+----------------------------+ +----------------------------+
| Azure Data Lake Gen2 | | Amazon S3 |
| - Raw / Curated / Sandbox | | - Raw / Curated / Sandbox |
+------------+--------------+ +------------+---------------+
| |
v v
+----------------------------+ +----------------------------+
| Azure Synapse / Fabric | | Amazon Redshift Spectrum |
| - External Tables (SQL) | | - External Tables (SQL) |
| - Views / Materialized | | - Views / Materialized |
+------------+--------------+ +------------+---------------+
| |
v v
+----------------------------+ +----------------------------+
| BI Tools / Semantic Layer |<----->| BI Tools / Semantic Layer |
| - Power BI, Tableau | | - QuickSight, Tableau |
+----------------------------+ +----------------------------+
No comments:
Post a Comment