Deploying a SQL Data Warehouse over a Data Lake—often referred to as a "Lakehouse" architecture—combines the scalability and flexibility of a Data Lake with the structured querying power of a Data Warehouse. Here's a comprehensive deployment plan ......
🧭 Phase 1: Strategy & Architecture Design
🔹 Define Objectives
Enable structured analytics over semi-structured/unstructured data
Support BI tools (e.g., Power BI, Tableau) via SQL endpoints
Ensure scalability, cost-efficiency, and governance
🔹 Choose Technology Stack
Layer | Azure Option | AWS Option |
---|---|---|
Data Lake | Azure Data Lake Storage Gen2 | Amazon S3 |
SQL Warehouse | Azure Synapse Analytics / Fabric | Amazon Redshift Spectrum |
Metadata Catalog | Azure Purview | AWS Glue Data Catalog |
Orchestration | Azure Data Factory | AWS Step Functions / Glue ETL |
CI/CD | Azure DevOps / GitHub Actions | AWS CodePipeline / GitHub |
🏗️ Phase 2: Data Lake Foundation
🔹 Provision Storage
Create hierarchical namespace-enabled containers
Define folder structure:
/raw/
,/curated/
,/sandbox/
🔹 Ingest Raw Data
Use ADF pipelines or Glue jobs to ingest from sources (RDBMS, APIs, logs)
Apply schema-on-read using Parquet/Delta formats
🔹 Implement Governance
Tag datasets with business metadata
Register assets in Purview or Glue Catalog
🧱 Phase 3: SQL Warehouse Layer
🔹 Create External Tables
Use
CREATE EXTERNAL TABLE
to define schema over Data Lake filesPartition by date or business keys for performance
🔹 Optimize Performance
Use columnar formats (Parquet, Delta)
Enable caching or materialized views for frequent queries
Implement statistics and auto-refresh policies
🔹 Enable BI Connectivity
Expose SQL endpoints
Configure ODBC/JDBC for Power BI/Tableau
🔁 Phase 4: CI/CD & Automation
🔹 Infrastructure as Code
Use ARM templates or Terraform for Synapse/Redshift setup
Script Data Lake provisioning and access policies
🔹 Pipeline Automation
Build ADF pipelines with parameterized datasets
Use Git integration for version control
Deploy via DevOps YAML or PowerShell scripts
🔹 Monitoring & Alerts
Integrate with Azure Monitor or CloudWatch
Set up alerts for pipeline failures, query latency, and storage thresholds
🔐 Phase 5: Security & Compliance
🔹 Access Control
Use RBAC and ACLs for Data Lake
Implement row-level and column-level security in SQL layer
🔹 Data Protection
Encrypt data at rest and in transit
Mask sensitive fields using dynamic data masking
🔹 Audit & Compliance
Enable logging for query access and data modifications
Integrate with compliance tools (e.g., Microsoft Defender, AWS Macie)
📊 Phase 6: Validation & Rollout
🔹 Test Scenarios
Validate SQL queries across raw and curated zones
Perform load testing and concurrency checks
🔹 Stakeholder Training
Provide SQL access guides
Conduct workshops for analysts and data scientists
🔹 Rollout Strategy
Start with a pilot domain (e.g., Sales or Finance)
Gradually onboard other domains
Here's a clean, professional deployment diagram and CI/CD template tailored for deploying a SQL Data Warehouse over a Data Lake in Azure. You can adapt this for AWS or hybrid environments as needed.
🧭 Architecture Diagram: SQL Data Warehouse over Data Lake (Azure)
+----------------------------+ +----------------------------+
| Source Systems | | External Data Sources |
| (ERP, CRM, APIs, Files) | | (Web, FTP, SaaS, IoT) |
+------------+--------------+ +------------+---------------+
| |
v v
+----------------------------+ +----------------------------+
| Azure Data Factory (ADF) |<----->| CI/CD Pipeline (DevOps) |
| - Ingest & Transform | | - YAML / ARM / PowerShell|
+------------+--------------+ +----------------------------+
|
v
+----------------------------+
| Azure Data Lake Storage |
| - Raw Zone (/raw/) |
| - Curated Zone (/curated/) |
| - Sandbox Zone (/sandbox/) |
+------------+--------------+
|
v
+----------------------------+
| Azure Synapse / Fabric |
| - External Tables (SQL) |
| - Views / Materialized |
| - SQL Endpoints for BI |
+------------+--------------+
|
v
+----------------------------+
| BI Tools / Consumers |
| - Power BI, Tableau |
| - Analysts, Data Scientists|
+----------------------------+
⚙️ CI/CD Template: Azure DevOps YAML (ADF + Synapse)
trigger:
branches:
include:
- main
variables:
environment: 'dev'
resourceGroup: 'rg-data-lakehouse'
location: 'westeurope'
stages:
- stage: DeployADF
jobs:
- job: DeployADF
steps:
- task: AzureResourceManagerTemplateDeployment@3
inputs:
deploymentScope: 'Resource Group'
azureResourceManagerConnection: 'AzureServiceConnection'
subscriptionId: '$(subscriptionId)'
action: 'Create Or Update Resource Group'
resourceGroupName: '$(resourceGroup)'
location: '$(location)'
templateLocation: 'Linked artifact'
csmFile: 'arm/adf-template.json'
overrideParameters: '-factoryName $(adfName)'
- stage: DeploySynapse
jobs:
- job: DeploySQL
steps:
- task: SqlAzureDacpacDeployment@1
inputs:
azureSubscription: 'AzureServiceConnection'
ServerName: '$(synapseServer)'
DatabaseName: '$(synapseDB)'
SqlUsername: '$(sqlUser)'
SqlPassword: '$(sqlPassword)'
DacpacFile: 'sql/synapse.dacpac'
A version for AWS (Redshift Spectrum + S3 + Glue) or a hybrid setup is below....
🌐 Hybrid Lakehouse Architecture: Azure + AWS
🧱 Core Components
Layer | Azure Stack | AWS Stack |
---|---|---|
Data Lake | Azure Data Lake Storage Gen2 | Amazon S3 |
SQL Warehouse | Azure Synapse / Fabric | Amazon Redshift Spectrum |
Metadata Catalog | Azure Purview | AWS Glue Data Catalog |
ETL/Orchestration | Azure Data Factory | AWS Glue / Step Functions / Airflow |
CI/CD | Azure DevOps / GitHub Actions | AWS CodePipeline / GitHub |
BI Tools | Power BI, Tableau | QuickSight, Tableau |
🧭 Deployment Plan
🔹 Phase 1: Foundation Setup
Provision S3 buckets and ADLS Gen2 containers with matching folder structures (
/raw/
,/curated/
,/sandbox/
)Set up cross-cloud identity federation (e.g., Azure AD ↔ IAM roles)
🔹 Phase 2: Data Ingestion
Use ADF and Glue to ingest data from sources into respective lakes
Apply schema-on-read using Parquet or Delta formats
🔹 Phase 3: SQL Layer Integration
Create external tables in Synapse and Redshift Spectrum pointing to lake zones
Use shared metadata via Purview ↔ Glue integration (manual or via APIs)
🔹 Phase 4: CI/CD Automation
Use Terraform or Pulumi for cross-cloud provisioning
Automate pipeline deployment via Azure DevOps and AWS CodePipeline
Store SQL scripts and ETL logic in GitHub with environment branching
🔹 Phase 5: BI & Consumption
Expose SQL endpoints from both Synapse and Redshift
Use semantic layers (e.g., AtScale) for unified business logic
Connect Power BI, Tableau, or QuickSight to both endpoints
🔹 Phase 6: Governance & Security
Apply RBAC and IAM policies across clouds
Encrypt data at rest and in transit
Enable audit logging and data classification
🗺️ Architecture Diagram (Hybrid)
+----------------------------+ +----------------------------+
| Source Systems | | External Data Sources |
| (ERP, CRM, APIs, Files) | | (Web, SaaS, IoT, FTP) |
+------------+--------------+ +------------+---------------+
| |
v v
+----------------------------+ +----------------------------+
| Azure Data Factory (ADF) | | AWS Glue / Airflow |
| - Ingest & Transform | | - ETL & Cataloging |
+------------+--------------+ +------------+---------------+
| |
v v
+----------------------------+ +----------------------------+
| Azure Data Lake Gen2 | | Amazon S3 |
| - Raw / Curated / Sandbox | | - Raw / Curated / Sandbox |
+------------+--------------+ +------------+---------------+
| |
v v
+----------------------------+ +----------------------------+
| Azure Synapse / Fabric | | Amazon Redshift Spectrum |
| - External Tables (SQL) | | - External Tables (SQL) |
| - Views / Materialized | | - Views / Materialized |
+------------+--------------+ +------------+---------------+
| |
v v
+----------------------------+ +----------------------------+
| BI Tools / Semantic Layer |<----->| BI Tools / Semantic Layer |
| - Power BI, Tableau | | - QuickSight, Tableau |
+----------------------------+ +----------------------------+