Saturday, October 18, 2025

A view on Lakehouse Architecture

 Deploying a SQL Data Warehouse over a Data Lake—often referred to as a "Lakehouse" architecture—combines the scalability and flexibility of a Data Lake with the structured querying power of a Data Warehouse. Here's a comprehensive deployment plan ......

🧭 Phase 1: Strategy & Architecture Design

🔹 Define Objectives

  • Enable structured analytics over semi-structured/unstructured data

  • Support BI tools (e.g., Power BI, Tableau) via SQL endpoints

  • Ensure scalability, cost-efficiency, and governance

🔹 Choose Technology Stack

LayerAzure OptionAWS Option
Data LakeAzure Data Lake Storage Gen2Amazon S3
SQL WarehouseAzure Synapse Analytics / FabricAmazon Redshift Spectrum
Metadata CatalogAzure PurviewAWS Glue Data Catalog
OrchestrationAzure Data FactoryAWS Step Functions / Glue ETL
CI/CDAzure DevOps / GitHub ActionsAWS CodePipeline / GitHub

🏗️ Phase 2: Data Lake Foundation

🔹 Provision Storage

  • Create hierarchical namespace-enabled containers

  • Define folder structure: /raw/, /curated/, /sandbox/

🔹 Ingest Raw Data

  • Use ADF pipelines or Glue jobs to ingest from sources (RDBMS, APIs, logs)

  • Apply schema-on-read using Parquet/Delta formats

🔹 Implement Governance

  • Tag datasets with business metadata

  • Register assets in Purview or Glue Catalog

🧱 Phase 3: SQL Warehouse Layer

🔹 Create External Tables

  • Use CREATE EXTERNAL TABLE to define schema over Data Lake files

  • Partition by date or business keys for performance

🔹 Optimize Performance

  • Use columnar formats (Parquet, Delta)

  • Enable caching or materialized views for frequent queries

  • Implement statistics and auto-refresh policies

🔹 Enable BI Connectivity

  • Expose SQL endpoints

  • Configure ODBC/JDBC for Power BI/Tableau

🔁 Phase 4: CI/CD & Automation

🔹 Infrastructure as Code

  • Use ARM templates or Terraform for Synapse/Redshift setup

  • Script Data Lake provisioning and access policies

🔹 Pipeline Automation

  • Build ADF pipelines with parameterized datasets

  • Use Git integration for version control

  • Deploy via DevOps YAML or PowerShell scripts

🔹 Monitoring & Alerts

  • Integrate with Azure Monitor or CloudWatch

  • Set up alerts for pipeline failures, query latency, and storage thresholds

🔐 Phase 5: Security & Compliance

🔹 Access Control

  • Use RBAC and ACLs for Data Lake

  • Implement row-level and column-level security in SQL layer

🔹 Data Protection

  • Encrypt data at rest and in transit

  • Mask sensitive fields using dynamic data masking

🔹 Audit & Compliance

  • Enable logging for query access and data modifications

  • Integrate with compliance tools (e.g., Microsoft Defender, AWS Macie)

📊 Phase 6: Validation & Rollout

🔹 Test Scenarios

  • Validate SQL queries across raw and curated zones

  • Perform load testing and concurrency checks

🔹 Stakeholder Training

  • Provide SQL access guides

  • Conduct workshops for analysts and data scientists

🔹 Rollout Strategy

  • Start with a pilot domain (e.g., Sales or Finance)

  • Gradually onboard other domains



Here's a clean, professional deployment diagram and CI/CD template tailored for deploying a SQL Data Warehouse over a Data Lake in Azure. You can adapt this for AWS or hybrid environments as needed.

🧭 Architecture Diagram: SQL Data Warehouse over Data Lake (Azure)

Code
+----------------------------+       +----------------------------+
|   Source Systems          |       |   External Data Sources    |
| (ERP, CRM, APIs, Files)   |       | (Web, FTP, SaaS, IoT)      |
+------------+--------------+       +------------+---------------+
             |                                   |
             v                                   v
+----------------------------+       +----------------------------+
| Azure Data Factory (ADF)   |<----->|   CI/CD Pipeline (DevOps) |
| - Ingest & Transform       |       |   - YAML / ARM / PowerShell|
+------------+--------------+       +----------------------------+
             |
             v
+----------------------------+
| Azure Data Lake Storage    |
| - Raw Zone (/raw/)         |
| - Curated Zone (/curated/) |
| - Sandbox Zone (/sandbox/) |
+------------+--------------+
             |
             v
+----------------------------+
| Azure Synapse / Fabric     |
| - External Tables (SQL)    |
| - Views / Materialized     |
| - SQL Endpoints for BI     |
+------------+--------------+
             |
             v
+----------------------------+
| BI Tools / Consumers       |
| - Power BI, Tableau        |
| - Analysts, Data Scientists|
+----------------------------+










⚙️ CI/CD Template: Azure DevOps YAML (ADF + Synapse)

yaml
trigger:
  branches:
    include:
      - main

variables:
  environment: 'dev'
  resourceGroup: 'rg-data-lakehouse'
  location: 'westeurope'

stages:
- stage: DeployADF
  jobs:
  - job: DeployADF
    steps:
    - task: AzureResourceManagerTemplateDeployment@3
      inputs:
        deploymentScope: 'Resource Group'
        azureResourceManagerConnection: 'AzureServiceConnection'
        subscriptionId: '$(subscriptionId)'
        action: 'Create Or Update Resource Group'
        resourceGroupName: '$(resourceGroup)'
        location: '$(location)'
        templateLocation: 'Linked artifact'
        csmFile: 'arm/adf-template.json'
        overrideParameters: '-factoryName $(adfName)'

- stage: DeploySynapse
  jobs:
  - job: DeploySQL
    steps:
    - task: SqlAzureDacpacDeployment@1
      inputs:
        azureSubscription: 'AzureServiceConnection'
        ServerName: '$(synapseServer)'
        DatabaseName: '$(synapseDB)'
        SqlUsername: '$(sqlUser)'
        SqlPassword: '$(sqlPassword)'
        DacpacFile: 'sql/synapse.dacpac'


A version for AWS (Redshift Spectrum + S3 + Glue) or a hybrid setup is below....


🌐 Hybrid Lakehouse Architecture: Azure + AWS

🧱 Core Components

LayerAzure StackAWS Stack
Data LakeAzure Data Lake Storage Gen2Amazon S3
SQL WarehouseAzure Synapse / FabricAmazon Redshift Spectrum
Metadata CatalogAzure PurviewAWS Glue Data Catalog
ETL/OrchestrationAzure Data FactoryAWS Glue / Step Functions / Airflow
CI/CDAzure DevOps / GitHub ActionsAWS CodePipeline / GitHub
BI ToolsPower BI, TableauQuickSight, Tableau

🧭 Deployment Plan

🔹 Phase 1: Foundation Setup

  • Provision S3 buckets and ADLS Gen2 containers with matching folder structures (/raw/, /curated/, /sandbox/)

  • Set up cross-cloud identity federation (e.g., Azure AD ↔ IAM roles)

🔹 Phase 2: Data Ingestion

  • Use ADF and Glue to ingest data from sources into respective lakes

  • Apply schema-on-read using Parquet or Delta formats

🔹 Phase 3: SQL Layer Integration

  • Create external tables in Synapse and Redshift Spectrum pointing to lake zones

  • Use shared metadata via Purview ↔ Glue integration (manual or via APIs)

🔹 Phase 4: CI/CD Automation

  • Use Terraform or Pulumi for cross-cloud provisioning

  • Automate pipeline deployment via Azure DevOps and AWS CodePipeline

  • Store SQL scripts and ETL logic in GitHub with environment branching

🔹 Phase 5: BI & Consumption

  • Expose SQL endpoints from both Synapse and Redshift

  • Use semantic layers (e.g., AtScale) for unified business logic

  • Connect Power BI, Tableau, or QuickSight to both endpoints

🔹 Phase 6: Governance & Security

  • Apply RBAC and IAM policies across clouds

  • Encrypt data at rest and in transit

  • Enable audit logging and data classification

🗺️ Architecture Diagram (Hybrid)

Code
+----------------------------+       +----------------------------+
|   Source Systems           |       |   External Data Sources    |
| (ERP, CRM, APIs, Files)    |       | (Web, SaaS, IoT, FTP)      |
+------------+--------------+       +------------+---------------+
             |                                   |
             v                                   v
+----------------------------+       +----------------------------+
| Azure Data Factory (ADF)   |       | AWS Glue / Airflow         |
| - Ingest & Transform       |       | - ETL & Cataloging         |
+------------+--------------+       +------------+---------------+
             |                                   |
             v                                   v
+----------------------------+       +----------------------------+
| Azure Data Lake Gen2       |       | Amazon S3                  |
| - Raw / Curated / Sandbox  |       | - Raw / Curated / Sandbox  |
+------------+--------------+       +------------+---------------+
             |                                   |
             v                                   v
+----------------------------+       +----------------------------+
| Azure Synapse / Fabric     |       | Amazon Redshift Spectrum   |
| - External Tables (SQL)    |       | - External Tables (SQL)    |
| - Views / Materialized     |       | - Views / Materialized     |
+------------+--------------+       +------------+---------------+
             |                                   |
             v                                   v
+----------------------------+       +----------------------------+
| BI Tools / Semantic Layer  |<----->| BI Tools / Semantic Layer  |
| - Power BI, Tableau        |       | - QuickSight, Tableau      |
+----------------------------+       +----------------------------+

📚 References & Guides

A view on Lakehouse Architecture

 Deploying a SQL Data Warehouse over a Data Lake—often referred to as a "Lakehouse" architecture—combines the scalability and flex...